Received: December 21, 1981

PRELIMINARY NOTE

Reaction of Bistrifluoromethylaminosulphenyl Chloride with Fluoro-olefins and Hexafluorobut-2-yne under Free-radical Conditions

COLIN F. SERVICE and ANTHONY E. TIPPING

Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)

SUMMARY

Reaction of bistrifluoromethylaminosulphenyl chloride with unsymmetrical fluoro-olefins in daylight or under photochemical conditions gives both possible 1:1 adducts (ca. 1:1 ratio) arising from homolytic fission of the S-Cl bond. Addition to octafluorobut-2-ene and hexafluorobut-2-yne gives mixtures of the syn- and anti- adducts.

The reaction of bistrifluoromethylaminosulphenyl chloride $(CF_3)_2NSCl$ (I) with ethylene at 70 °C did not result in 1:1 adduct formation but gave the compounds $[(CF_3)_2N]_2S$ (II), $(CF_3)_2NH$, $CF_3N=CF_2$, SiF_4 and $(ClCH_2CH_2)_2S$ [1]. However, treatment of a series of hydrocarbon olefins with the sulphenyl chloride (I) at -78 °C in the dark (ionic conditions) resulted in the formation of 1:1 adducts in high yield and it was

ABLE

Reaction of the sulph	enyl chloride (I) wit	th fluoro-olefins,	sulphenyl chloride (I) with fluoro-olefins, tetrachloroethene and hexafluorobut-2-yne
Alkene or	(1)	Conditions	Products (% yield)
alkyne (g, mmole)	(g, mmole)		
CH ₂ =CHF	(2.31, 10.52)	u.v., 22 h	$(cF_3)_2$ NSCH ₂ CHFCl 26,
(0.60, 13.50)			$(CF_3)_2$ NSCHFCH ₂ Cl 25,
			(II) 16, (III) 3, (IV) 1,
			(Va) 8, (VIa) 1
$cH_2 = cF_2$	(1.82, 8.29)	u.v. 21 h	(CF ₃) ₂ NSCH ₂ CF ₂ C1 36,
(0.56, 8.75)			(CF ₃) ₂ NSCF ₂ CH ₂ Cl 38,
			(II) 13, (III) 8, (Vb) 23, (VIb) 5,
CHF=CF ₂	(2.46, 11.21)	light, 4 d	(CF ₃) ₂ NSCF ₂ CHFCl 35,
(0.91, 11.0)			$(c_{\rm F_3})_2$ NSCHFCF ₂ Cl 26,
			(II) 1, (III) 10.5, (Vc) 40,
			(VIIa) 1.5, (VIIb) 1.5, (VIII) 3.5
CF2CFC1*	(2.16, 9.84)	light, 22 d	$(CF_3)_2$ NSCF $_2$ CFCl $_2$ 31,
(1.19, 10.19)			$(cF_3)_2$ NSCFCICF $_2$ Cl 31,
			(I) 2, (II), 15, (III) 10.5
			(Vd) 16, (VIC) 4, (IX) 6.5, (X) 11

CF2=CFC1*	(1.80, 8.20)	u.v., 22 h	$(c_5)_2$ NSCF $_2$ CFCl $_2$ 26,
(1.50, 12.87)			$(CF_3)_2$ NSCFC1CF ₂ C1 26, (II) 11.5, (III) 12, (IV) 3, (Vd) 11,
			(VIIc) 3, (XI) 3.5, (XII) 1
CF_2 =CHCF $_3$	(2.53, 11.53)	u.v., 30 h	$(c_5)_2$ NSCH (c_5) CF ₂ Cl 35,
(1.75, 13.26)			$(CF_{5})_{2}NSCF_{2}CHCICF_{5}$ 22, (I) 1, (II) 11. (III) 7. (Ve) 7. (XIII) 3
* 5 5 5	(07 9 10 1)	27 72	2
or 2-or or 3			(0.3/2000 200 000 3 00)
(1.11, 7.40)			$(\mathrm{CF}_3)_2 \mathrm{NSCF} (\mathrm{CF}_3) \mathrm{CF}_2 \mathrm{Cl}$ 33, (I) 9,
			(II) 20, (III) 10, (Vf) 3
CF ₃ CF=CFCF3	(0.86, 3.92)	u.v., 21 h	$(c_5)_2 \text{NSCF}(c_5) \text{CFClCF}_5$ 59, $^{\dagger}(\text{II})$ 8,
(0.98, 4.90)			(III) 22, (IV) 11, (Vg) 36, (VIId) 5
cc12=cc12	(3.33, 15.17)	u.v., 21 h	$(CF_3)_2NSCC1_2CC1_3$ 32, (II) 15,
(2.53, 15.24)			(III) 48, (Vh) 9.5, (VIIe) 3
CF3C=CCF3	(1.58, 7.20)	light, 7 d	$(\underline{\mathbf{E}})$ - $(\mathrm{CF}_3)_2 \mathrm{NSC}(\mathrm{CF}_3)$ = CCLCF_3 42
(1.16, 7.17)			(\underline{z}) - $(CF_3)_2NSC(CF_3)$ = $CCLCF_3$ 21, (II) 4,
			(III) 10.5, (XIV) 11, (XV) 4,
			(XVI) 2, (XVII) 10, (XVIII) 4.5

All reactions were carried out in vacuo in sealed Pyrex ampoules. *1:1 Adducts could not be separated by g.l.c. † Mixture of erythro- and threo- adducts (1:1 ratio). † Mixture of cisand trans- isomers (1:3 ratio).

considered that these products probably arose <u>via</u> cyclic sulphonium or chloronium ion intermediates [2], e.g.

(I) +
$$CH_2 = CMe_2$$
 \longrightarrow $CH_2 - CMe_2$ \longrightarrow $(CF_3)_2 NSCH_2 CMe_2 C1$

$$SN(CF_3)_2$$

In the present work the sulphenyl chloride (I) was prepared by treatment of the mercurial [(CF₃)₂N]₂Hg with sulphur dichloride [3] and its reaction with various fluoro-olefins, tetrachloroethene, and hexafluorobut-2-yne was investigated; the results obtained are summarised in the Table.

Although the 1:1 adduct yields were reasonable they were lower than those obtained from the ionic additions to hydrocarbon olefins [2] because of byproduct formation. The results obtained with octafluorobut-2-ene and hexafluorobut-2-yne show conclusively that the adducts are formed by a radical pathway and not by a concerted <u>syn-addition</u> of the sulphenyl chloride (I) <u>via</u> a four-centre transition state.

Radical attack on the olefin CF_2 =CFCl is known to take place almost exclusively on the CF_2 group { the addition of CF_3 I to this olefin affords a small proportion (1%) of the adduct CF_3 CFClCF₂I formed via CF_3 · radical attack on the CFCl group [4] } and so it is apparent that both the $(CF_3)_2$ NS· radical and the chlorine atom initially attack the olefin $\{\underline{cf}\}$. radical addition of the sulphenyl chloride CF_3 SCl to fluoro-olefins [5]}. The results obtained from the addition of (I) to the other fluoro-olefins are consistent with this.

An interesting observation was that although the olefin dichloride (V) was formed in each reaction a compound of type $(CF_5)_2NSCCSN(CF_5)_2$ was not detected in any of the reactions.

[CF3CCl=C(CF3)]2S

(XVIII)

The isolated individual 1:1 adducts (or mixtures of 1:1 adducts as indicated in the Table) possessed correct elemental compositions and their structures were established spectroscopically [i.r., n.m.r. (1 H and 19 F) and mass].

- 1 H.J. Emeléus and B.W. Tattershall, J. Inorg. Nuc. Chem., 28 (1966) 1823.
- 2 C.F. Service and A.E. Tipping, J. Fluorine Chem., 19 (1981) 91.
- 3 H.J. Emeléus and B.W. Tattershall, J. Chem. Soc., (1964) 5892.
- 4 R.E. Banks, A. Braithwaite, R.N. Haszeldine and D.R. Taylor, J. Chem. Soc. (C), (1968) 2593.
- 5 J.F. Harris Jr., J. Amer. Chem. Soc., <u>84</u> (1962) 3148.